Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Ciência e Agrotecnologia
País:  Brazil
Título:  Effect of salinity stress in Setaria viridis (L.) P. Beauv. accession A10.1 during seed germination and plant development
Autores:  Ferreira,Thalita Massaro Malheiros
Santos,Mariana de Lima
Lopes,Cecilia Lima
Sousa,Carlos Antonio Ferreira de
Souza Junior,Manoel Teixeira
Data:  2020-01-01
Ano:  2020
Palavras-chave:  Abiotic stress
Phenomics
Biosaline agriculture
Plant biotechnology
Salt responsive genes.
Resumo:  ABSTRACT Setaria viridis (L.) P. Beauv. is a species proposed to be used as model plant in reverse genetics studies for the validation of gene function. Soil salinity is a recurring problem present in more than a 100 countries worldwide, and approximately 20% of the agricultural land in the world has saline and/or sodium soils. Saline stress affects all the main processes of the plant, such as germination, growth, and, consequently, the yield. The present study aimed at determining the tolerance levels of S. viridisA10.1 to saline stress and identify its potential as a model plant to validate salt-tolerance candidate genes/alleles as well as promoter sequences from salt-responsive genes. In an initial experiment, the seeds of the plant were sown on a germination medium containing an increasing concentration of NaCl (0, 30, 60, 90, 120, or 150 mM), and maintained there during the initial growth stage; and, in another experiment, the plants at the vegetative growth stage were submitted to increasing doses of NaCl (0.0, 0.2, 0.4, 0.6, 0.8, and 1.0g per 100g of the substrate). The germination rate was found to be affected a little by the salinity, while the seedlings development was impaired right after germination. Plant in the vegetative growth stage experienced a reduction in the evapotranspiration rates and pigment levels, along with an impairment in the system of capture and use of light, and a decrease in the leaf gas exchange rates, resulting in less accumulation of dry and fresh plant biomass proportional to the salt dose used. Plants started to die within a week at doses ≥19.4 dS/m. In conclusion, A10.1 is a glycophyte plant with some level of salt-tolerance and might be used as a model plant to validate salt-tolerance candidate genes/alleles, as well as promoters salt-responsive genes, depending on the right combination of plant age and level of stress. As seed germination is affected only little by salt stress at NaCl doses of about 15 dS/m or less, A10.1 might not be used to validate genes/alleles with a putative role regarding this trait.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542020000100244
Editor:  Editora da Universidade Federal de Lavras
Relação:  10.1590/1413-7054202044010020
Formato:  text/html
Fonte:  Ciência e Agrotecnologia v.44 2020
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional